Identification of significant factors for air pollution levels using a neural network based knowledge discovery system
نویسندگان
چکیده
Artificial neural network (ANN) is a commonly used approach to estimate or forecast air pollution levels, which are usually assessed by the concentrations of air contaminants such as nitrogen dioxide, sulfur dioxide, carbon monoxide, ozone, and suspended particulate matters (PMs) in the atmosphere of the concerned areas. Even through ANN can accurately estimate air pollution levels they are numerical enigmas and unable to provide explicit knowledge of air pollution levels by air pollution factors (e.g. traffic and meteorological factors). This paper proposed a neural network based knowledge discovery system aimed at overcoming this limitation in ANN. The system consists of two units: (a) an ANN unit, which is used to estimate the air pollution levels based on relevant air pollution factors; (b) a knowledge discovery unit, which is used to extract explicit knowledge from the ANN unit. To demonstrate the practicability of this neural network based knowledge discovery system, numerical data on mass concentrations of PM2.5 and PM1.0, meteorological and traffic data measured near a busy traffic road in Hangzhou city were applied to investigate the air pollution levels and the potential air pollution factors that may impact on the concentrations of these PMs. Results suggest that the proposed neural network based knowledge discovery system can accurately estimate air pollution levels and identify significant factors that have impact on air pollution levels. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Artificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کاملPredicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملPM10 AIR POLLUTION IN MASHAD CITY USING ARTIFICIAL NEURAL NETWORK AND MAKOV CHAIN MODEL
Suspended particles management is one of the important issues in controlling the air pollution of cities. These particles cause and develop heart and respiratory diseases in people. Mashhad is considered as one of the main and populous cities of Iran. Because of its climatic conditions and its tourism, the city is at the highest risk of this type of pollution. We attempted to use the multi-l...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 99 شماره
صفحات -
تاریخ انتشار 2013